Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38347809

RESUMO

Summary: Background. Little is known about the relationship between allergic diseases and seizure disorders including epilepsy. It is hypothesized that inflammation from allergic diseases may predispose children to seizures. the aim of this study is to investigate frequency of seizure disorder in children with asthma and allergy. Methods. A cross-sectional survey study of parents of 1300 children and adolescents under 20 years of age referred to the Allergy and Asthma Clinic of Imam Ali Hospital (Karaj) who were asked to complete a screening questionnaire for seizures in their children. Parents who reported any history of seizures in their children were contacted to answer a second in-depth questionnaire to determine more detail of type, triggers, and treatment of seizures. Results. A total of 705 males (62%) and 433 females (38%) participated in this study, with a mean and standard age of 6.62±4.57 years. Among them, 70.6% had asthma, 15.2% had allergic rhinitis, 5.6% had atopic dermatitis, 3.5% had urticaria, 2.7% had food allergies, 1% had drug allergies, and 1.4% had other allergic diseases. Additionally, 88 patients (7.7%) had a history of doctor-diagnosed seizures, 57 patients (5%) had febrile convulsions, and 15 patients (1.31%) had idiopathic epilepsy. There was no significant relationship found between febrile convulsions, seizures, and epilepsy with the type of allergic diseases. However, a significant association was observed between the number of comorbid allergic diseases in patients with febrile convulsions (OR=1.4, 95% CI: 1.07-1.83, P=0.013).There was also an association between the epilepsy and comorbid allergic diseases number with an odds ratio OR=1.84, 95% CI=0.28-12, however the risk of epilepsy was increased by 0.84 percent but this increase was not significant. Regarding the relation between the number of allergic diseases in parents and idiopathic epilepsy in their children, a significant association was found only for mothers (OR=1.28, 95% CI: 1.04-2.23, P=0.024), but not for fathers (P>0.05). Conclusions. Febrile convulsion is associated with the .number of comorbid allergic diseases in children and the mother's number of allergic diseases is more related to idiopathic epilepsy in children than the father's.

3.
J Dairy Sci ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38246557

RESUMO

This study aimed to investigate the metabolic changes in the livers of dairy cows from 1 wk before dry-off to 1 wk after calving. Twelve high-yielding Holstein cows were included in a longitudinal study and housed in a tie-stall barn. The cows were dried off at 6 wk before the expected calving date (dry period length = 42 d). During the entire lactation, the cows were milked twice daily at 0600 and 1700 h. Liver biopsies were taken from each cow at 4 different times: wk -7 (before drying off), -5 (after drying off), -1 and +1 relative to calving. A targeted metabolomics approach was performed by liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP® Quant 500 kit. A total of 185 metabolites in the liver were used for the final data analysis. Principal component analysis (PCA) revealed a clear separation by days of sampling, indicating a notable shift in metabolic phenotype from late lactation to dry period and further changes after calving. Changes were observed in several classes of compounds, including amino acids and biogenic amines. In particular, the changes in acylcarnitines (AcylCN), phosphatidylcholines (PC), sphingomyelins (SM) and bile acids (BA) indicated extensive remodeling of the hepatic lipidome. The changes in AcylCN concentrations in early lactation suggest incomplete fatty acid oxidation in the liver, possibly indicating mitochondrial dysfunction or enzymatic imbalance. In addition, the changes in PC and SM species in early lactation indicate altered cell membrane composition, which may affect cell signaling and functionality. In addition, changes in BA concentrations and profiles indicate dynamic adaptations in BA synthesis, lipid digestion and absorption during the observation period. In particular, PCA analysis showed an overlapping distribution of liver metabolites in primiparous and multiparous cows, indicating no significant difference between these groups. In addition, Volcano plots showed similar liver metabolism between primiparous and multiparous cows, with no significant fold changes (>1.5) in any metabolite at significant P-values (false discovery rate <0.05). These results provide valuable insight into the physiological ranges of liver metabolites during dry period and calving in healthy dairy cows and should contribute to the design and interpretation of future metabolite-based studies of the transition dairy cow.

4.
J Dairy Sci ; 107(3): 1751-1765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806621

RESUMO

In a previously established animal model, 38 multiparous Holstein cows were assigned to 2 groups fed different diets to achieve either a normal (NBCS) or high (HBCS) body condition score (BCS) and backfat thickness (BFT) until dry-off at -49 d before calving (NBCS: BCS <3.5 [3.02 ± 0.24) and BFT <1.2 cm [0.92 ± 0.21]; HBCS: BCS >3.75 [3.82 ± 0.33] and BFT >1.4 cm [2.36 ± 0.35], mean ± SD). The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg; mean ± SD). The cows were then fed the same diet during the dry period and subsequent lactation, maintaining the differences in BFT and BCS throughout the study. Using the serum metabolomics data, we created a classification model that identified different metabotypes. Machine learning classifiers revealed a distinct cluster labeled HBCS-PN (HBCS predicted normal BCS) among over-conditioned cows. These cows showed higher feed intake and better energy balance than the HBCS-PH (high BCS predicted high BCS) group, while milk yield was similar. The aim of this study was to investigate the changes in the hepatic transcriptome of cows differing in serum-metabotype postpartum. We performed hepatic transcriptome analysis in cows from 3 metabolic clusters: HBCS-PH (n = 8), HBCS-PN (n = 6), and normal BCS predicted normal BCS (NBCS-PN, n = 8) on d 21 (±2) postpartum. Liver tissue from cows expressed a total of 13,118 genes aligned with the bovine genome. A total of 48 differentially expressed genes (DEG; false discovery rate ≤0.1 and fold-change >1.5) were found between NBCS-PN and HBCS-PH cows, whereas 24 DEG (14 downregulated and 10 upregulated) were found between HBCS-PN and HBCS-PH cows. The downregulated DEG (n = 31) in NBCS-PN cows compared with HBCS-PH cows are involved in biosynthetic processes such as lipid, lipoprotein, and cholesterol synthesis (e.g., APOA1, MKX, RPL3L, CANT1, CHPF, FUT1, ZNF696), cell organization, biogenesis, and localization (e.g., SLC12A8, APOA1, BRME1, RPL3L, STAG3, FBXW5, TMEM120A, SLC16A5, FGF21), catabolic processes (e.g., BREH1, MIOX, APOBEC2, FBXW5, NUDT16), and response to external stimuli (e.g., APOA1, FGF21, TMEM120A, FNDC4), whereas upregulated DEG (n = 17) are related to signal transduction and cell motility (e.g., RASSF2, ASPN, SGK1, KIF7, ZEB2, MAOA, ACKR4, TCAF1), suggesting altered metabolic adaptations during lactation. Our results showed 24 DEG between HBCS-PN and HBCS-PH in the liver. The expression of SLC12A8, SLC16A5, FBXW5, OSGIN1, LAMA3, KDELR3, OR4X17, and INHBE, which are responsible for regulating cellular processes was downregulated in HBCS-PN cows compared with HBCS-PH cows. In particular, the downregulation of SLC12A8 and SLC16A5 expression in HBCS-PN cows indicates lower metabolic load and reduced need for NAD+ biosynthesis to support mitochondrial respiratory processes. The upregulation of MAOA, ACKR4, KIF27, SFRP1, and CAV2 in the liver of HBCS-PN cows may indicate adaptive mechanisms to maintain normal liver function in response to increased metabolic demands from over-conditioning. These molecular differences underscore the existence of distinct metabolic types in cows and provide evidence for the role of the liver in shaping different metabolic patterns.


Assuntos
Período Pós-Parto , Transcriptoma , Feminino , Bovinos , Animais , Período Pós-Parto/metabolismo , Lactação/fisiologia , Leite/química , Fígado/metabolismo
5.
J Dairy Sci ; 107(2): 1263-1285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777004

RESUMO

The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.


Assuntos
Antioxidantes , Leite , Feminino , Bovinos , Animais , Leite/química , Antioxidantes/metabolismo , Soro , Lactação/fisiologia , Período Pós-Parto/metabolismo , Dieta/veterinária , Metaboloma , Metabolismo Energético , Ácidos e Sais Biliares
6.
J Dairy Sci ; 106(12): 9822-9842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641324

RESUMO

The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).


Assuntos
Doenças dos Bovinos , Lactação , Feminino , Bovinos , Animais , Lactação/fisiologia , Lipopolissacarídeos/efeitos adversos , Carnitina/metabolismo , DNA Mitocondrial , Variações do Número de Cópias de DNA , Dinâmica Mitocondrial , Inflamação/veterinária , Suplementos Nutricionais , Fígado/metabolismo , Leite/metabolismo , Dieta/veterinária , Expressão Gênica , Fibrinogênio/efeitos adversos , Fibrinogênio/metabolismo , RNA Mensageiro/metabolismo , Proteínas Mitocondriais/metabolismo , Telômero , Doenças dos Bovinos/metabolismo
7.
Eur Ann Allergy Clin Immunol ; 55(1): 19-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918886

RESUMO

Summary: Background. Inborn errors of immunity (IEIs) are a group of heterogeneous disorders with inherited faults in the immune system that increase susceptibility to infections, malignancies, lymphoproliferation, and autoimmune/autoinflammatory disorders. Methods. We retrospectively studied the demographic characteristics, clinical features, and immunological profiles of the 90 IEIs patients, who were diagnosed and classified according to the European Society for Immunodeficiencies (ESID) and International Union of Immunological Societies (IUIS) criteria from July 2010 to June 2021. The study was carried out in the Non-communicable Diseases Research Center, Imam Ali Hospital, Alborz, Iran. Results. Within a period of 11 years, 53 (58.9%) males and 37 (41.1%) females were diagnosed and followed up for 20 IEI disorders. The median (IQR) age of onset, age of clinical diagnosis and diagnostic delay was 0.7 (0.08-2.0), 3.18 (1.0-8.0) and 1.5 (0.17-5.0) years, respectively. Twelve patients (36.4%) had a positive family history of IEI, and the majority of patients (84.5%) had recurrent infections. Pneumonia (51.7%) was the most common clinical manifestation among IEI patients, followed by skin complications (46.2%). The most frequently diagnosed IEI was immunoglobulin A deficiency (IgAD) (14.4%) and severe combined immunodeficiency (SCID) (11.1%). Predominantly antibody deficiencies group (36.7%) was the most common category, followed by combined immunodeficiencies with associated or syndromic features group (27.8%). Conclusions. IEIs have different patterns within populations with high consanguinity. There is a need to search for underlying genetic and epigenetic factors in most common IEIs in Alborz.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Masculino , Feminino , Humanos , Estudos Retrospectivos , Irã (Geográfico)/epidemiologia , Diagnóstico Tardio , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/epidemiologia , Síndromes de Imunodeficiência/genética
8.
J Dairy Sci ; 106(2): 822-842, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460512

RESUMO

Mobilization of body reserves including fat, protein, and glycogen is necessary to overcome phases of negative nutrient balance typical for high-yielding dairy cows during the periparturient period. Skeletal muscle, the largest internal organ in mammals, plays a crucial role in maintaining metabolic homeostasis. However, unlike in liver and adipose tissue, the metabolic and regulatory role of skeletal muscle in the adaptation of dairy cows to the physiological needs of pregnancy and lactation has not been studied extensively. The functional integrity and quality of skeletal muscle are maintained through a constant turnover of protein, resulting from both protein breakdown and protein synthesis. Thus, muscle protein breakdown (MPB) and synthesis are intimately connected and tightly controlled to ensure proper protein homeostasis. Understanding the regulation of MPB, the catabolic component of muscle turnover, and its assessment are therefore important considerations to provide information about the timing and extent of tissue mobilization in periparturient dairy cows. Based on animal models and human studies, it is now evident that MPB occurs via the integration of 3 main systems: autophagy-lysosomal, calpain Ca2+-dependent cysteine proteases, and the ubiquitin-proteasome system. These 3 main systems are interconnected and do not work separately, and the regulation is complex. The ubiquitin-proteasomal system is the most well-known cellular proteolytic system and plays a fundamental role in muscle physiology. Complete degradation of a protein often requires a combination of the systems, depending on the physiological situation. Determination of MPB in dairy cows is technically challenging, resulting in a relative dearth of information. The methods for assessing MPB can be divided into either direct or indirect measurements, both having their strengths and limitations. Available information on the direct measures of MPB primarily comes from stable isotopic tracer methods and those of indirect measurements from assessing expression and activity measures of the components of the 3 MPB systems in muscle biopsy samples. Other indirect approaches (i.e., potential indicators of MPB), including ultrasound imaging and measuring metabolites from muscle degradation (i.e., 3-methylhistidine and creatinine), seem to be applicable methods and can provide useful information about the extent and timing of MPB. This review presents our current understanding, including methodological considerations, of the process of MPB in periparturient dairy cows.


Assuntos
Lactação , Proteínas Musculares , Músculo Esquelético , Período Periparto , Prenhez , Proteólise , Animais , Bovinos , Feminino , Gravidez , Tecido Adiposo/metabolismo , Dieta/veterinária , Lactação/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Período Periparto/metabolismo , Prenhez/metabolismo
9.
J Dairy Sci ; 106(2): 807-821, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460514

RESUMO

The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.


Assuntos
Doenças dos Bovinos , Resistência à Insulina , Feminino , Bovinos , Animais , Insulina/metabolismo , Lactação , Tecido Adiposo/metabolismo , Lipólise , Dieta/veterinária , Doenças dos Bovinos/metabolismo
10.
Sci Rep ; 12(1): 2297, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145150

RESUMO

In high-yielding dairy cows, the rapidly increasing milk production after parturition can result in a negative nutrient balance, since feed intake is insufficient to cover the needs for lactation. Mobilizing body reserves, mainly adipose tissue (AT), might affect steroid metabolism. We hypothesized, that cows differing in the extent of periparturient lipomobilization, will have divergent steroid profiles measured in serum and subcutaneous (sc)AT by a targeted metabolomics approach and steroidogenic enzyme profiles in scAT and liver. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to a high (HBCS) or normal body condition (NBCS) group fed differently until week 7 antepartum to either increase (HBCS BCS: 3.8 ± 0.1 and BFT: 2.0 ± 0.1 cm; mean ± SEM) or maintain BCS (NBCS BCS: 3.0 ± 0.1 and BFT: 0.9 ± 0.1 cm). Blood samples, liver, and scAT biopsies were collected at week -7, 1, 3, and 12 relative to parturition. Greater serum concentrations of progesterone, androsterone, and aldosterone in HBCS compared to NBCS cows after parturition, might be attributed to the increased mobilization of AT. Greater glucocorticoid concentrations in scAT after parturition in NBCS cows might either influence local lipogenesis by differentiation of preadipocytes into mature adipocytes and/or inflammatory response.


Assuntos
Tecido Adiposo/metabolismo , Aldosterona/genética , Aldosterona/metabolismo , Androsterona/genética , Androsterona/metabolismo , Bovinos/metabolismo , Indústria de Laticínios , Metabolômica , Período Periparto/sangue , Período Periparto/metabolismo , Progesterona/genética , Progesterona/metabolismo , RNA Mensageiro/sangue , RNA Mensageiro/metabolismo , Adipócitos/fisiologia , Aldosterona/sangue , Androsterona/sangue , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Diferenciação Celular , Ingestão de Alimentos/fisiologia , Feminino , Glucocorticoides/metabolismo , Lactação , Lipogênese , Progesterona/sangue
11.
J Dairy Sci ; 104(10): 11291-11305, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34334194

RESUMO

Postnatal metabolism depends on maturation of key metabolic pathways around birth. In this regard, endogenous glucose production is impaired in calves born preterm. Concerning protein metabolism, the rates of protein turnover are greater during the neonatal period than at any other period of postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system (UPS) are considered as the major regulators of cellular protein turnover. The objectives of this study were to investigate (1) the changes in plasma AA profiles, (2) the mRNA abundance of mTOR signaling and UPS-related genes in skeletal muscle, and (3) the mRNA abundance of branched-chain AA (BCAA) catabolic enzymes in skeletal muscle and adipose tissue in neonatal calves with different degree of maturation during the transition to extrauterine life. Calves (n = 7/treatment) were born either preterm (PT; delivered by cesarean section 9 d before term) or at term (T; spontaneous vaginal delivery) and were left unfed for 1 d. Calves in treatment TC were also spontaneously born but were fed colostrum and transition milk for 4 d. Blood samples were collected from all calves at birth and at 24 h of life. Additional blood samples were taken 2 h after feeding (26 h of life) for PT and T calves, and on d 4 of life for TC, to determine plasma glucose, urea, and AA. Tissue samples from 3 muscles [M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM)], and kidney fat were collected following euthanasia at 26 h after birth (PT, T) or on d 4 of life (TC) at 2 h after feeding. The concentrations of the majority of plasma AA (Ala, Gln, Asn, Cit, Lys, Orn, Thr, and Tyr), nonessential AA, and total AA were greater during the first 24 h and also before and 2 h after feeding in PT than in T. The ratio of plasma BCAA to the aromatic AA (Tyr and Phe) was greatest in TC, followed by T, and least in PT. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in MLD and MM was greater in PT and T than in TC. The mRNA abundance of muscle-specific ligases FBXO32 (F-box only protein 32) in the 3 different skeletal muscles and TRIM63 (tripartite motif containing 63) in MLD was greater in PT and T than in TC; in MM, TRIM63 mRNA was greatest in PT. The mRNA for BCKDHA and BCKDHB (the α and ß polypeptide of branched-chain α-keto acid dehydrogenase) in kidney fat was elevated in PT and T compared with TC, suggesting a possible enhancement of BCAA oxidation as energy source to cover the energetic and nutritional postnatal demands in PT and T in a starved state. The increased abundances of mTOR-associated signaling factors and muscle-specific ligase mRNA indicate a greater rate of protein turnover in muscles of PT and T in a starved state. Elevated plasma concentrations of several AA may result from enhanced muscle proteolysis and impaired conversion to glucose in the liver of PT calves.


Assuntos
Cesárea , Proteínas Musculares , Tecido Adiposo/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Bovinos , Cesárea/veterinária , Dieta , Feminino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Gravidez , Proteólise
12.
J Dairy Sci ; 104(10): 11193-11209, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34253361

RESUMO

This study aimed at characterizing the effects of dietary l-carnitine supplementation on hepatic fatty acid (FA) metabolism during inflammation in mid-lactating cows. Fifty-three pluriparous Holstein dairy cows were randomly assigned to either a control (CON, n = 26) or an l-carnitine supplemented (CAR; n = 27) group. The CAR cows received 125 g of a rumen-protected l-carnitine product per cow per day (corresponding to 25 g of l-carnitine/cow per day) from d 42 antepartum (AP) until the end of the trial on d 126 postpartum (PP). Aside from the supplementation, the same basal diets were fed in the dry period and during lactation to all cows. In mid lactation, each cow was immune-challenged by a single intravenous injection of 0.5 µg of LPS/kg of BW at d 111 PP. Blood samples were collected before and after LPS administration. The mRNA abundance of in total 39 genes related to FA metabolism was assessed in liver biopsies taken at d -11, 1, and 14 relative to LPS (d 111 PP) and also on d 42 AP as an individual covariate using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to the concentrations of 3 selected proteins related to FA metabolism, acetyl-CoA carboxylase α (ACACA), 5' AMP-activated protein kinase (AMPK), and solute carrier family 25 member 20 (SLC25A20) were assessed by a capillary Western blot method in liver biopsies from d -11 and 1 relative to LPS from 11 cows each of CAR and CON. On d -11 relative to LPS, differences between the mRNA abundance in CON and CAR were limited to acyl-CoA dehydrogenase (ACAD) very-long-chain (ACADVL) with greater mRNA abundance in the CAR than in the CON group. The liver fat content decreased from d -11 to d 1 relative to the LPS injection and remained at the lower level until d 14 in both groups. One day after the LPS challenge, lower mRNA abundance of carnitine palmitoyltransferase 1 (CPT1), CPT2, ACADVL, ACAD short-chain (ACADS), and solute carrier family 22 member 5 (SLC22A5) were observed in the CAR group as compared with the CON group. However, the mRNA abundance of protein kinase AMP-activated noncatalytic subunit gamma 1 (PRKAG1), ACAD medium-chain (ACADM), ACACA, and FA binding protein 1 (FABP1) were greater in the CAR group than in the CON group on d 1 relative to LPS. Two weeks after the LPS challenge, differences between the groups were no longer detectable. The altered mRNA abundance before and 1 d after LPS pointed to increased transport of FA into hepatic mitochondria during systemic inflammation in both groups. The protein abundance of AMPK was lower in CAR than in CON before the LPS administration. The protein abundance of SLC25A20 was neither changing with time nor treatment and the ACACA protein abundance was only affected by time. In conclusion, l-carnitine supplementation temporally altered the hepatic mRNA abundance of some genes related to mitochondrial biogenesis and very-low-density lipoprotein export in response to an inflammatory challenge, but with largely lacking effects before and 2 wk after LPS.


Assuntos
Lactação , Leite , Animais , Carnitina , Bovinos , Suplementos Nutricionais , Ácidos Graxos , Feminino , Fígado , RNA Mensageiro
13.
J Dairy Sci ; 104(4): 5095-5109, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33663821

RESUMO

In the dairy cow, late gestation and early lactation are characterized by a complexity of metabolic processes required for the homeorhetic adaptation to the needs of fetal growth and milk production. Skeletal muscle plays an important role in this adaptation. The objective of this study was to characterize the metabolome in skeletal muscle (semitendinosus muscle) and in serum of dairy cows in the context of the physiological changes occurring in early lactation and to test the effects of dietary supplementation (from d 1 in milk onwards) with conjugated linoleic acids (sCLA; 100 g/d; supplying 7.6 g of cis-9,trans-11 CLA and 7.6 g of trans-10,cis-12 CLA per cow/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). The metabolome was characterized in skeletal muscle samples collected on d 21 and 70 after calving in conjunction with their serum counterpart using a targeted metabolomics approach (AbsoluteIDQ p180 kit; Biocrates Life Sciences AG, Innsbruck, Austria). Thereby 188 metabolites from 6 different compound classes (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids, and hexoses) were quantified in both sample types. In both groups, dry matter intake increased after calving. It was lower in sCLA than in CTR on d 21, which resulted in reduced calculated net energy and metabolizable protein balances. On d 21, the concentrations of dopamine, Ala, and hexoses in the skeletal muscle were higher in sCLA than in CTR. On d 21, the changed metabolites in serum were mainly long-chain (>C24) diacyl phosphatidylcholine PC (PC-aa) and acyl-alkyl phosphatidylcholine (PC-ae), along with lysophosphatidylcholine acyl (lysoPC-a) C26:1 that were all lower in sCLA than in CTR. Supplementation with CLA affected the muscle concentrations of 22 metabolites on d 70 including 10 long-chain (>C22) sphingomyelin (SM), hydroxysphingomyelin [SM(OH)], PC-aa, and PC-ae along with 9 long-chain (>C16) lysoPC-a and 3 metabolites related to amino acids (spermine, citrulline, and Asp). On d 70, the concentrations of lysoPC-a C18:2 and C26:0 in serum were higher in the sCLA cows than in the CTR cows. Regardless of treatment, the concentrations of Ile, Leu, Phe, Lys, His, Met, Trp, and hydroxybutyrylcarnitine (C4-OH) decreased, whereas those of ornithine, Gln, and trans-4-hydroxyproline (t4-OH-Pro) increased from d 21 to 70 in muscle. The significantly changed metabolites in serum with time of lactation were 28 long-chain (>C30) PC-ae and PC-aa, 7 long-chain (>C16) SM and SM(OH), along with lysoPC-a C20:3 that were all increased. In conclusion, in addition to other significantly changed metabolites, CLA supplementation mainly led to changes in muscle and serum concentrations of glycerophospholipids and sphingolipids that might reflect the phospholipid compositional changes in muscle. The metabolome changes observed in sCLA on d 21 seem to be, at least in part, due to the lower DMI in these cows. The changes in the muscle concentrations of AA from d 21 to 70, which coincided with the steady energy and MP balances, might reflect a shift of protein synthesis/degradation balance toward synthesis.


Assuntos
Ácidos Linoleicos Conjugados , Animais , Áustria , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Lactação , Ácidos Linoleicos Conjugados/metabolismo , Metaboloma , Leite , Músculo Esquelético/metabolismo , Gravidez
14.
Animal ; 15(4): 100179, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589349

RESUMO

Knowledge regarding the potential interactions between supplemental fat source and fiber level in starter diet of dairy calves is lacking. The aim of the present study was to investigate the effects of supplemental saturated fat [palm fat (PLF) containing 86% palmitic acid (C16:0)] vs. unsaturated fat [soybean oil (SBO) containing 51% linoleic acid (C18:2)] and forage level on feed intake, growth performance, ruminal fermentation, nutrient digestibility, and metabolic traits in dairy calves. Forty newborn Holstein female calves (BW = 39.7 ±â€¯1.8 kg) were assigned to 1 of 4 treatment groups (each consisting of 10 animals) in a 2 × 2 factorial arrangement of fat source [soybean oil vs. palm fat; 3% of starter based on DM basis] and alfalfa hay level (0 vs. 15%, on DM basis): SBO or PLF with (AH) or without (NAH) alfalfa hay. Calves had ad libitum access to water and starters throughout the study and a constant amount of milk was offered among experimental calves during the pre-weaning period. All calves were weaned on day 63 of age and remained in the study until day 73 of age. The results showed that the lowest and the highest starter intake and average daily gain during pre-weaning period was observed when calves received SBO-AH and PLF-AH, respectively. Accordingly, the lowest wither and hip heights at weaning time (day 63) and final wither height (day 73) were observed in SBO-AH group across treatments. Calves received PLF-AH had the highest weaning and final BW compared to other groups. Feed efficiency tended to be higher in PLF groups compared with SBO calves. Calves fed SBO-AH had the lowest digestibility of organic matter and neutral detergent fiber and also total short chain fatty acid concentrations in rumen compared with other groups. The SBO calves had lower urinary allantoin, urinary purine derivatives, and microbial protein synthesis than PLF calves; however, urinary nitrogen increased with SBO supplementation. In summary, the supplementation of SBO rich in C18:2 and AH during the pre-weaning period resulted in negative responses on growth performance, digestibility, and ruminal fermentation profile. Therefore, the inclusion SBO rich in C18:2 along with forage in the starter is not recommendable for young dairy calves.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Feminino , Fermentação , Nitrogênio/metabolismo , Nutrientes , Rúmen/metabolismo , Desmame
15.
J Dairy Sci ; 103(7): 6684-6691, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32331878

RESUMO

Haptoglobin (Hp), one of the major positive acute phase proteins in cattle, is released in response to proinflammatory cytokines. Colostrum intake might influence the response of the innate immune system, including Hp gene expression. Thus, we hypothesized that plasma concentrations and tissue mRNA expression of Hp in neonatal calves might be influenced by early nutrition in the neonatal calf and would thus be greater if receiving colostrum compared with milk-based formula. Two trials were performed. In trial 1, German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) up to 4 d of life. Blood was sampled from d 1 to 4 before morning feeding and before and 2 h after feeding on d 4. Tissue samples from liver, kidney fat, duodenum, and ileum were collected after slaughter on d 4 at 2 h after feeding. In trial 2, calves born preterm (n = 7) or at term (n = 7) received colostrum only at 24 h post natum. Blood was sampled at birth, and before and 2 h after feeding. Tissue samples from liver and kidney fat were collected after slaughter at 26 h after birth. Blood plasma, colostrum, and formula Hp concentrations were determined using a competitive ELISA. Tissue expression of Hp mRNA was quantified by real-time quantitative PCR. The formula contained much less Hp (≤0.5 µg/mL) than colostrum (69.3, 93.9, and 20.4 µg/mL from d 1 to d 3, respectively). In trial 1, before colostrum or formula feeding, plasma concentrations of Hp were comparable in both groups. Plasma Hp increased in FOR after feeding, resulting in greater or a trend for greater plasma Hp concentrations in FOR than in COL calves. The mRNA abundance of Hp in liver and kidney fat was 3- and 2.2-fold greater in FOR than in COL calves, respectively, whereas duodenal and ileal abundance of Hp mRNA did not differ between groups. In trial 2, plasma Hp concentrations decreased slightly over time in term calves, but they did not differ in both groups before and 2 h after feeding on d 2. The abundance of Hp mRNA in liver was 5.3-fold greater in term than in preterm calves, whereas its abundance in kidney fat did not differ between groups. Contrasting our hypothesis, formula, but not colostrum feeding was associated with greater Hp mRNA abundance in liver and adipose tissue, indicating that the response of innate immune system seems to be modulated by formula feeding because of the lack of immunoglobulin intake. The lower hepatic abundance of Hp mRNA in preterm calves than in term calves may indicate lower synthetic capacity of the liver for Hp in preterm calves shortly after birth.


Assuntos
Ração Animal , Bovinos/metabolismo , Haptoglobinas/metabolismo , Animais , Animais Recém-Nascidos/sangue , Bovinos/genética , Colostro/metabolismo , Dieta/veterinária , Feminino , Haptoglobinas/genética , Fígado/metabolismo , Gravidez , RNA Mensageiro/metabolismo
16.
J Dairy Sci ; 103(4): 3730-3744, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32008771

RESUMO

The transition from late gestation to early lactation is associated with extensive changes in metabolic, endocrine, and immune functions in dairy cows. Skeletal muscle plays an important role in maintaining the homeorhetic adaptation to the metabolic needs of lactation. The objective of this study was to characterize the skeletal muscle metabolome in the context of the metabolic changes that occur during the transition period in dairy cows with high (HBCS) versus normal body condition (NBCS). Fifteen weeks antepartum, 38 pregnant multiparous Holstein cows were assigned to 1 of 2 groups, which were fed differently to reach the targeted BCS and back fat thickness (BFT) until dry-off at -49 d before calving (HBCS: >3.75 and >1.4 cm; NBCS: <3.5 and <1.2 cm). During the dry period and the subsequent lactation, both groups were fed identical diets. The differences in both BCS and BFT were maintained throughout the study. The metabolome was characterized in skeletal muscle samples (semitendinosus muscle) collected on d -49, 3, 21, and 84 relative to calving using a targeted metabolomics approach (AbsoluteIDQ p180 kit; Biocrates Life Sciences AG, Innsbruck, Austria), which allowed for the quantification of up to 188 metabolites from 6 different compound classes (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids, and hexoses). On d -49, the concentrations of citrulline and hydroxytetradecadienyl-l-carnitine in muscle were higher in HBCS cows than in NBCS cows, but those of carnosine were lower. Over-conditioning did not affect the muscle concentrations of any of the metabolites on d 3. On d 21, the concentrations of phenylethylamine and linoleylcarnitine in muscle were lower in HBCS cows than in NBCS cows, and the opposite was true for lysophosphatidylcholine acyl C20:4. On d 84, the significantly changed metabolites were mainly long-chain (>C32) acyl-alkyl phosphatidylcholine and di-acyl phosphatidylcholine, along with 3 long-chain (>C16) sphingomyelin that were all lower in HBCS cows than in NBCS cows. These data contribute to a better understanding of the metabolic adaptation in skeletal muscle of dairy cows during the transition period, although the physiological significance and underlying molecular mechanisms responsible for the regulation of citrulline, hydroxytetradecadienyl-l-carnitine, carnosine, and phenylethylamine associated with over-conditioning are still elusive and warrant further investigation. The changes observed in muscle lysophosphatidylcholine and phosphatidylcholine concentrations may point to an alteration in phosphatidylcholine metabolism, probably resulting in an increase in membrane stiffness, which may lead to abnormalities in insulin signaling in the muscle of over-conditioned cows.


Assuntos
Lactação/fisiologia , Metaboloma , Músculo Esquelético/metabolismo , Período Pós-Parto/metabolismo , Animais , Bovinos , Dieta/veterinária , Metabolismo Energético/fisiologia , Feminino , Insulina/metabolismo , Metabolismo dos Lipídeos , Gravidez
17.
J Dairy Sci ; 103(3): 2829-2846, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954574

RESUMO

The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis via its main downstream effectors, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein (4EBP1). The ubiquitin-proteasome system (UPS) is the main proteolytic pathway in muscle, and the muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1, MuRF-1) and F-box only protein 32 (FBXO32; also called atrogin-1) are important components of the UPS. We investigated 20S proteasome activity and mRNA expression of key components of mTOR signaling and UPS in skeletal muscle of dairy cows during late gestation and early lactation and tested the effects of dietary supplementation (from d 1 in milk) with conjugated linoleic acids (sCLA; 100 g/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). Blood and muscle tissue (semitendinosus) samples were collected on d -21, 1, 21, and 70 relative to parturition. Dry matter intake increased with time of lactation in both groups. It was lower in sCLA than in CTR on d 21, which resulted in a reduced calculated metabolizable protein balance. Most serum and muscle concentrations of AA followed time-related changes but were unaffected by CLA supplementation. In both groups, serum and muscle 3-methylhistidine (3-MH) concentrations and the ratio of 3-MH:creatinine increased from d -21 to d 1, followed by a decline on d 21. The mRNA abundance of MTOR on d 21 and 70 was greater in sCLA than in CTR. The abundance of 4EBP1 mRNA did not differ between groups but was upregulated in both on d 1. The mRNA abundance of S6K1 on d 70 was greater in CTR than in sCLA, but remained unchanged over time in both groups. The mRNA abundance of FBXO32 (encoding atrogin-1) on d 21 was greater in sCLA than in CTR. The mRNA abundance of TRIM63 (also known as MuRF1) showed a similar pattern as FBXO32 in both groups: an increase from d -21 to d 1, followed by a decline. The mRNA for the α (BCKDHA) and ß (BCKDHB) polypeptide of branched-chain α-keto acid dehydrogenase was elevated in sCLA and CTR cows on d 21, respectively, suggesting a role of CLA in determining the metabolic fate of branched-chain AA. For the mTOR protein, no group differences were observed. The abundance of S6K1 protein was greater across all time points in sCLA versus CTR. The antepartum 20S proteasome activity in muscle was elevated in both groups compared with postpartum, probably reflecting the start of protein mobilization before parturition. Plasma insulin concentrations decreased in both groups postpartum but to a greater extent in CTR than in sCLA, resulting in greater insulin concentrations in sCLA than in CTR. Thus, the greater abundance of MTOR mRNA and S6K1 protein in sCLA compared with CTR might be mediated by the greater plasma insulin postpartum. The upregulation of MTOR mRNA in sCLA cows on d 21, despite greater FBXO32 mRNA abundance, may reflect a simultaneous activation of both anabolic and catabolic signaling pathways, likely resulting in greater protein turnover.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais/análise , Ácidos Linoleicos Conjugados/administração & dosagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Animais , Bovinos/genética , Feminino , Insulina/sangue , Lactação/efeitos dos fármacos , Metilistidinas/análise , Leite/metabolismo , Músculo Esquelético/metabolismo , Parto , Período Pós-Parto , Gravidez , RNA Mensageiro/genética , Ubiquitina/metabolismo
18.
J Dairy Sci ; 103(3): 2847-2863, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928756

RESUMO

Branched-chain amino acids (BCAA) are major components of milk protein and important precursors for nonessential AA. Thus, the BCAA transport and break-down play a key role in the metabolic adaptation to the high nutrient demands in lactation. However, in monogastrics, increased BCAA levels have been linked with obesity and certain metabolic disorders such as impaired insulin sensitivity. Our objective was to study the effect of over-conditioning at calving on plasma BCAA levels as well as the tissue abundance of the most relevant BCAA transporters and degrading enzymes in dairy cows during late pregnancy and early lactation. Thirty-eight Holstein cows were allocated 15 wk antepartum to either a normal- (NBCS) or over-conditioned (HBCS) group, receiving 6.8 or 7.2 MJ of NEL/kg of DM, respectively, during late lactation to reach the targeted differences in body condition score (BCS) and back fat thickness (BFT; NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off. During the dry period and next lactation, cows were fed the same diets, whereby differences in BCS and BFT were maintained: prepartum means were 3.16 ± 0.06 and 1.03 ± 0.07 cm (NBCS) vs. 3.77 ± 0.08 and 1.89 ± 0.11 cm (HBCS), postpartum means were 2.89 ± 0.06 and 0.81 ± 0.05 cm (NBCS) vs. 3.30 ± 0.06 and 1.38 ± 0.08 cm (HBCS). Blood and biopsies from liver, semitendinosus muscle, and subcutaneous adipose tissue (scAT) were sampled at d 49 antepartum, 3, 21, and 84 postpartum. Free BCAA were analyzed and the mRNA abundance of solute carrier family 1 member 5 (SLC1A5), SLC7A5, and SLC38A2 as well as branched-chain aminotransferase 2 (BCAT2), branched-chain α-keto acid dehydrogenase E1α (BCKDHA), and branched-chain α-keto acid dehydrogenase E1ß (BCKDHB) as well as the protein abundance of BCKDHA were assessed. Concentrations of all BCAA changed with time, most markedly in HBCS cows, with a nadir around calving. Apart from Ile, neither individual nor total BCAA differed between groups. The HBCS group had greater BCKDHA mRNA as well as higher prepartum BCKDHA protein abundance in scAT than NBCS cows, pointing to a greater oxidative capacity for the irreversible degradation of BCAA transamination products in scAT of over-conditioned cows. Prepartum hepatic BCKDHA protein abundance was lower in HBCS than in NBCS cows. In both groups, SLC1A5, SLC7A5, and BCAT2 mRNA were most abundant in scAT, whereas SLC38A2 was higher in scAT and muscle compared with liver, and BCKDHA and BCKDHB mRNA were greatest in liver and muscle, respectively. Our results indicate that scAT may be a major site of BCAA uptake and initial catabolism, with the former, however, being independent of BCS and time relative to calving in dairy cows.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Bovinos/fisiologia , Leite/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Bovinos/genética , Dieta/veterinária , Feminino , Lactação , Fígado/metabolismo , Músculo Esquelético/enzimologia , Período Pós-Parto , Gravidez , RNA Mensageiro/genética , Gordura Subcutânea/enzimologia
19.
J Dairy Sci ; 102(12): 11544-11560, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587900

RESUMO

The objective of the current study was to investigate the effects of overconditioning around calving on gene expression of key components of the mammalian target of rapamycin (mTOR) pathway and ubiquitin-proteasome system (UPS) in skeletal muscle as well as the AA profiles in both serum and muscle of periparturient cows. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition group (HBCS; n = 19) or a normal body condition group (NBCS; n = 19) and were fed different diets until dry-off (d -49 relative to calving) to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg). At dry-off, the NBCS cows (parity: 2.42 ± 1.84; body weight: 665 ± 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 ± 1.67; body weight: 720 ± 57 kg) had a BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. Blood samples and skeletal muscle biopsies (semitendinosus) were repeatedly (d -49, +3, +21, and +84 relative to calving) collected for assessing the concentrations of free AA and the mRNA abundance of various components of mTOR and UPS. The differences in BCS and BFT were maintained throughout the study. The circulating concentrations of most AA with the exception of Gly, Gln, Met, and Phe increased in early lactation in both groups. The serum concentrations of Ala (d +21 and +84) and Orn (d +84) were lower in HBCS cows than in NBCS cows, but those of Gly, His, Leu, Val, Lys, Met, and Orn on d -49 and Ile on d +21 were greater in HBCS cows than in NBCS cows. The serum concentrations of 3-methylhistidine, creatinine, and 3-methylhistidine:creatinine ratio increased after calving (d +3) but did not differ between the groups. The muscle concentrations of all AA (except for Cys) remained unchanged over time and did not differ between groups. The muscle concentrations of Cys were greater on d -49 but tended to be lower on d +21 in HBCS cows than in NBCS cows. On d +21, mTOR and eukaryotic translation initiation factor 4E binding protein 1 mRNA abundance was greater in HBCS cows than in NBCS cows, whereas ribosomal protein S6 kinase 1 was not different between the groups. The mRNA abundance of ubiquitin-activating enzyme 1 (d +21), ubiquitin-conjugating enzyme 1 (d +21), atrogin-1 (d +21), and ring finger protein-1 (d +3) enzymes was greater in HBCS cows than in NBCS cows, whereas ubiquitin-conjugating enzyme 2 was not different between the groups. The increased mRNA abundance of key components of mTOR signaling and of muscle-specific ligases of HBCS cows may indicate a simultaneous activation of anabolic and catabolic processes and thus increased muscle protein turnover, likely as a part of the adaptive response to prevent excessive loss of skeletal muscle mass during early lactation.


Assuntos
Bovinos/metabolismo , Expressão Gênica , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/metabolismo , Animais , Peso Corporal , Dieta/veterinária , Metabolismo Energético , Feminino , Lactação , Metilistidinas/sangue , Leite , Gravidez , Transdução de Sinais
20.
J Dairy Sci ; 102(7): 6571-6586, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31056318

RESUMO

Biogenic amines (BA) are a class of nitrogenous compounds that are involved in a wide variety of physiological processes, but their role in transition cows is poorly understood. Our objectives were to describe the longitudinal changes of BA in serum and in skeletal muscle during the transition period and to characterize temporal responses of BA in relation to body condition score (BCS) of periparturient dairy cows. Fifteen weeks before calving, 36 multiparous Holstein cows were assigned to 2 groups (n = 18 per group) that were fed differently to reach either high [HBCS; net energy for lactation (NEL) = 7.2 MJ/kg of dry matter (DM)] or normal BCS (NBCS; NEL = 6.8 MJ/kg of DM) at dry-off. The targeted BCS and back fat thickness (BFT) at dry-off (HBCS, >3.75 and >1.4 cm; NBCS, <3.5 and <1.2 cm) were reached. Thereafter, both groups were fed identical diets. Blood samples and muscle (semitendinosus) biopsies were collected at d -49, +3, +21, and +84 relative to parturition. In serum and skeletal muscle, BA concentrations were measured using a targeted metabolomics assay. The data were analyzed as a repeated measure using the MIXED procedure of SAS. The serum concentrations of most BA (i.e., creatinine, taurine, carnosine putrescine, spermine, α-aminoadipic acid, acetylornithine, kynurenine, serotonin, hydroxyproline, asymmetric dimethylarginine, and symmetric dimethylarginine) fluctuated during the transition period, while others (i.e., spermidine, phenylethylamine) did not change with time. The muscle concentrations of BA remained unchanged over time. Creatinine had the highest concentrations in the serum, while carnosine had the highest concentration among the muscle BA. The serum concentrations of creatinine (d +21), putrescine (d +84), α-aminoadipic acid (d +3), and hydroxyproline (d +21) were or tended to be higher for HBCS compared with NBCS postpartum. The serum concentrations of symmetric dimethylarginine (d -49) and acetylornithine (d +84) were or tended to be lower for HBCS compared with NBCS, respectively. The serum kynurenine/tryptophan ratio was greater with HBCS than with NBCS (d +84). Compared with NBCS, HBCS was associated with lower muscle concentrations of carnosine, but those of hydroxyproline were higher (d -49). In both serum and muscle, the asymmetric dimethylarginine concentrations were greater with HBCS than with NBCS (d -49). No correlation was found between serum and skeletal muscle BA. This study indicates that overconditioning of dairy cows may influence serum and muscle BA concentrations in the periparturient period.


Assuntos
Aminas Biogênicas/sangue , Bovinos/fisiologia , Músculo Esquelético/química , Animais , Aminas Biogênicas/metabolismo , Aleitamento Materno , Bovinos/sangue , Dieta/veterinária , Metabolismo Energético/fisiologia , Feminino , Lactação/fisiologia , Fígado/metabolismo , Leite/metabolismo , Músculo Esquelético/metabolismo , Parto , Período Pós-Parto/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...